
JenkinsPipelineUnit
Test your Continuous Delivery Pipeline

Ozan Gunalp - Emmanuel Quincerot

Ozan Günalp

Developer at LesFurets

PhD in Computer Science

@ozangunalp

Emmanuel Quincerot

Developer at LesFurets

@EQuincerot

Who we are

First independant insurance comparison website in France

Operating since 2012

50 insurers on Vehicle, Home, Health and Loan products

3M quotes per year

20+ developers

30~ developments in parallel

Daily deployment to production since 2014

~220 releases per year

Delivery @ LesFurets

Continuous delivery @ LesFurets

Feature Branching + Continuous Integration

One branch per development
Continuous merge for staging

Daily release of ready branches

Continuous delivery @ LesFurets

Feature Branching + Continuous Integration

One branch per development
Continuous merge for staging

Daily release of ready branches

Isolated developments
Early feedback

Build
UT + IT

Before: Legacy Continuous delivery

Package
Deploy

Acceptance
Tests

SCM SCM

DEV DB

Build & Deploy
Scripts

Application
Source

Before: Legacy Continuous delivery

• Teamcity + Jenkins (Configuration in UI)
• Multi-repo (code + deployment scripts)
• Shared development database
• Manual database migration
• No artifact repository
• Hard-coded notifications on Slack

Jobs are broken often by evolutions

Build
UT + IT

After: Jenkins pipeline-as-code

Package
Deploy

Acceptance
Tests

SCM

Artifact
Repo

After: Jenkins pipeline-as-code

• Jenkins pipelines everywhere
• Same repository for code & pipeline
• Automated tests with database on docker
• Fully automated database migration
• Lazy packaging with artifact repository
• Job result feedback with Slack notifications

Every evolution is tested separately and released

pipeline-as-code

Coordinate tasks
Handle errors and retry

Parallelize

Externalize configuration
Separate configuration from workflow

No conf in shell scripts

...and they lived happily after

Migration to Jenkins pipelines

Pay the price of early adoption : discovering Jenkins
pipelines with incomplete documentation

Workspaces and multi-branch

 One branch validated on many agents
One workspace per branch on each agent

100 branches x 1GB

No automatic cleanup

Workspaces and multi-branch

 One branch validated on many agents
One workspace per branch on each agent

100 branches x 1GB

No automatic cleanup

No space left on disk

Workspaces - first try

 Clean the workspace

Disk usage problem solved
Clone from scratch, slow and intensive network usage

Workspaces - second try

 Share the workspace among branches, with:

ws('validation') {
 checkout(scm)

 sh 'git clean -xdf'
 ...
}

Quick checkout and workspace reused

DRY

Splitting pipeline scripts
Script loader

// jenkins/step/deploy/flyway.jenkins

def execute() {
 node() {
 commons.dlFromRepository(scmHash, 'flyway-migrations.zip')
 sh 'unzip -o flyway-migrations.zip'
 dir('flyway-migrations') {
 sh "./flyway-migrate.sh"
 }
 }
}

return this

Development by Trial and Error

Replay is your friend...

Development by Trial and Error

...until it is not.

java.lang.UnsupportedOperationException: no known implementation of interface
jenkins.tasks.SimpleBuildStep is named FooBar
...

at org.kohsuke.groovy.sandbox.impl.Checker$1.call(Checker.java:153)
at org.kohsuke.groovy.sandbox.impl.Checker.checkedCall(Checker.java:157)
at org.kohsuke.groovy.sandbox.impl.Checker.checkedCall(Checker.java:127)
at com.cloudbees.groovy.cps.sandbox.SandboxInvoker.methodCall(SandboxInvoker.java:17)
at Script17.execute(Script17.groovy:14)
at ___cps.transform___(Native Method)
at com.cloudbees.groovy.cps.impl.ContinuationGroup.methodCall(ContinuationGroup.java:57)
at com.cloudbees.groovy.cps.impl.ContinuationGroup.methodCall(ContinuationGroup.java:57)

...

Risky business

One change can cause regression
“Oops! The load test is triggered after deploying the

production!”

We need to test and track the impact of our changes!

JenkinsPipelineUnit

Continuous delivery pipelines are described with code

Pipeline code is versioned in our code base

JenkinsPipelineUnit
Unit tests to check what will be executed

https://github.com/lesfurets/JenkinsPipelineUnit

https://github.com/lesfurets/JenkinsPipelineUnit

DEMO

Setup

Add dependency from Maven Central
com.lesfurets:jenkins-pipeline-unit:1.0

Extend the base class
class MyTest extends BasePipelineTest

Mock variables
binding.setVariable('DEPLOY_TO', 'DEV')

Mock Jenkins steps
helper.registerAllowedMethod('sh', [Map],

{ println "calling sh with $it" })

Features

Unit test

Debug in IDE

Callstack print

Non-regression test

Jenkinsfile.run()
 Jenkinsfile.node(groovy.lang.Closure)
 Jenkinsfile.stage(Checkout, groovy.lang.Closure)
 Jenkinsfile.checkout(...)
 Jenkinsfile.sh(git clean -xdf)
 Jenkinsfile.stage(Build and test, groovy.lang.Closure)
 Jenkinsfile.sh(./gradlew build)
 Jenkinsfile.junit(build/test-results/test/*.xml)
 Jenkinsfile.stage(Create a Manifest, groovy.lang.Closure)
 Jenkinsfile.sh({returnStdout=true, script=git rev-parse HEAD})
 Jenkinsfile.writeFile({file=MANIFEST.txt, text=2345aef})
 Jenkinsfile.archive(MANIFEST.txt)

How does it work?

How does it work?

Transforms Groovy code to Continuation Passing Style with groovy-cps,
as pipelines in Jenkins

Runs scripts with GroovyScriptEngine by injecting variables

Uses Groovy metaClass to intercept method calls for mocking steps and
generating call stack

JUnit @Rule

Spawns Jenkins instance, with plugins

Mandatory for UI tests and plugins

More representative but slower

vs. JenkinsRule

https://wiki.jenkins.io/display/JENKINS/Unit+Test#UnitTest-Mocking

https://wiki.jenkins.io/display/JENKINS/Unit+Test#UnitTest-Mocking

When to use what?

Developing a plugin ?
JenkinsRule

Continuous delivery pipeline of your organization ?
JenkinsPipelineUnit

Global Shared Library ?
JenkinsPipelineUnit

Declarative pipelines ?
JenkinsPipelineUnit - ?

Tested pipeline-as-code

Rapid development lifecycle for pipeline code

Testing in local before pushing to Jenkins

Breaking boundaries between Dev and Ops

Tested pipeline-as-code

Optional stages

Lazy packaging

Shared workspace

Deployment scripts optimization

2/3 of developer team is contributing to pipelines

Tests with dockerized database

Cache warmup

Slack notifications

Automated commits

Community

JenkinsPipelineUnit

Unit test

Callstack print

Non-regression test

Debug in IDE

Improved declarative pipelines support

Linting

Open Source @ LesFurets
github.com/lesfurets
JenkinsPipelineUnit

git-octopus

github.com/lesfurets/lesfurets-conferences

@ozangunalp
@equincerot

https://github.com/lesfurets/JenkinsPipelineUnit
https://github.com/lesfurets/git-octopus
https://github.com/lesfurets/lesfurets-conferences

